NAME SERVICE

Site hosted by Angelfire.com: Build your free website today!

Name service is a network service providing name-to-address translation. Such service may be achieved in a number of ways. For a simple networking environment, it can be accomplished with a single central database containing name-to-address correspondence for all the pertinent network entities, such as hosts. In the case of the old ARPANET host names, a central database is duplicated in each individual host. The originating module of an application process would query the local name service (e.g., make a system call) to obtain network address for the destination host. With the proliferation of networks and an accelerating increase in the number of hosts participating in networking, the ever growing size, update frequency, and the dissemination of the central database makes this approach unmanageable. The hierarchical structure of the Internet naming convention supports decentralization of naming authority and distribution of name service capability. It readily accommodates growth of the naming universe. It allows an arbitrary number of hierarchical layers. The addition of a new domain adds little complexity to an existing Internet system.The name service at each domain is assumed to be provided by one or more name servers. There are two models for how a name server completes its work, these might be called "iterative" and "recursive". For an iterative name server there may be two kinds of responses. The first kind of response is a destination address. The second kind of response is the address of another name server. If the response is a destination address, then the query is satisfied. If the response is the address of another name server, then the query must be repeated using that name server, and so on until a destination address is obtained. For a recursive name server there is only one kind of response -- a destination address. This puts an obligation on the name server to actually make the call on another name server if it can't answer the query itself. It is noted that looping can be avoided since the names presented for translation can only be of finite concatenation. However, care should be taken in employing mechanisms such as a pointer to the next simple name for resolution.

Further discussion and examples of name service is given in Appendix C. The basic name service at each domain is the translation of simple names to addresses for all of its children. However, if only this basic name service is provided, the use of complete (or fully qualified) names would be required. Such requirement can be unreasonable in practice. Thus, we propose the use of partial names in the context in which their uniqueness is preserved. By construction, naming uniqueness is preserved within the domain of a common ancestry. Thus, a partially qualified name is constructed by omitting from the complete name ancestors common to the communicating parties. When a partially qualified name leaves its context of uniqueness it must be additionally qualified. The use of partially qualified names places a requirement on the Internet name service. To satisfy this requirement, the name service at each domain must be capable of, in addition to the basic service, resolving simple names for all of its ancestors (including itself) and their children. In Appendix B, the required distinction among simple names for such resolution is addressed.

BACK TO PAPA